Teaching Video NeuroImages: High blood flow velocity in the parent artery prior to basilar tip aneurysm rupture

Fei Peng, MS,* Miaoqi Zhang, BE,* Xin Feng, MS, Yunduo Li, BE, Rui Li, PhD,† and Aihua Liu, MD‡

Correspondence
Dr. A. Liu
liuaihuadoctor@163.com
or Dr. R. Li
leerui@tsinghua.edu.cn

A 70-year-old asymptomatic man presented with moyamoya disease (MMD)–associated basilar tip aneurysm (BTA) noted on digital subtraction angiography (figure 1, A–D). 4D-flow MRI revealed a concentrated inflow jet with high velocity compared with previous studies1 (video 1 and figure 2, A–F). Considering the high risk of endovascular treatment, the patient chose conservative treatment. After 1 month, the aneurysm ruptured (figure 1, E–F).

The compensatory reaction due to internal carotid artery occlusion (figure 1D) could induce increased flow, leading to BTA formation and rupture. 4D-flow MRI can provide...
comprehensive hemodynamics with accurate blood flow and velocity. MMD-derived concentrated inflow jet with high velocity can expedite aneurysm rupture, which mandates prompt operation.

Study funding
This work was supported by the Natural Science Foundation of China (no. 81771233) and the Natural Science Foundation of Beijing, China (no. 7142032).

Disclosure
The authors report no disclosures relevant to the manuscript. Go to Neurology.org/N for full disclosures.

References
Teaching Video NeuroImages: High blood flow velocity in the parent artery prior to basilar tip aneurysm rupture
Fei Peng, Miaoqi Zhang, Xin Feng, et al.
Neurology 2019;93;1018-1019
DOI 10.1212/WNL.0000000000008585

This information is current as of December 2, 2019

<table>
<thead>
<tr>
<th>Updated Information & Services</th>
<th>including high resolution figures, can be found at: http://n.neurology.org/content/93/23/1018.full</th>
</tr>
</thead>
<tbody>
<tr>
<td>References</td>
<td>This article cites 2 articles, 0 of which you can access for free at: http://n.neurology.org/content/93/23/1018.full#ref-list-1</td>
</tr>
<tr>
<td>Subspecialty Collections</td>
<td>This article, along with others on similar topics, appears in the following collection(s): All Cerebrovascular disease/Stroke http://n.neurology.org/cgi/collection/all_cerebrovascular_disease_stroke MRI http://n.neurology.org/cgi/collection/mri Subarachnoid hemorrhage http://n.neurology.org/cgi/collection/subarachnoid_hemorrhage</td>
</tr>
<tr>
<td>Permissions & Licensing</td>
<td>Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at: http://www.neurology.org/about/about_the_journal#permissions</td>
</tr>
<tr>
<td>Reprints</td>
<td>Information about ordering reprints can be found online: http://n.neurology.org/subscribers/advertise</td>
</tr>
</tbody>
</table>

Neurology © is the official journal of the American Academy of Neurology. Published continuously since 1951, it is now a weekly with 48 issues per year. Copyright © 2019 American Academy of Neurology. All rights reserved. Print ISSN: 0028-3878. Online ISSN: 1526-632X.